Coding Standards for .NET

By Lance Hunt

Document Version 1.15
March 2007

Copyright 0 Lance Hunt 2007
All Rights Reserved

Published by Lance Hunt
Please submit comments, questions, and feedback to http://www.lance-hunt.net

Lance Hunt C# Coding Standards for .NET

License

Usage & Distribution
This document is FREE for commercial, personal, academic, and non-commercial use in its original unmodified form.

Publication of the work or derivation of the work in any form is prohibited unless a valid license is obtained from the
copyright holder.

Commercial redistribution of the work or derivative of the work in any form is prohibited unless a valid license is obtained
from the copyright holder.

Non-commercial redistribution of the work is permitted in its original unmodified form so long as all license and all
copyright notices are retained and respected.

Trademarks

All uses of terms that are known trademarks or service marks have been appropriately capitalized. The Publisher cannot
attest to the accuracy of this information. Use of terms within this work should not be regarded as affecting the validity of
any trademark or service mark. All Trademarks are the property of their respective owners.

Disclaimer

The information provided is on an “As-Is” basis. Use at your own risk. The Author and Publisher shall have neither
liability nor responsibility to any person or entity with respect to the loss or damages arising from the information contained
in this work. This work may include inaccuracies or typographical errors and solely represent the opinions of the Author.
Changes are periodically made to this document without notice.

Any action related to this work will be governed by Texas state law and controlling U.S. federal law. No choice of law rules
of any jurisdiction will apply.

The Author reserves the right to revise these terms or terminate the above license at any time without notice.

http://www.lance-hunt.net i

Table of Contents

Table of Contents

1.

owu

T oo [1 T 1o T o TSR PRSPPI 1
I R Yo 0 o1 ST TP PT PP OTPTPRPRPRPRTPN 1
2 B o ol B[=T o1 A @] 017/ 1110 o LSRR PRRPT 1
1.3 Terminology & DEfINItIONS ... ittt e e ettt e e e e e e s e an e e ee e e e e e s anbnreeeeaaeaaanns 2
O = T S SERRRR 2

1.4.1 N E= LT o @0 a1V 7=T 01 o) 1= RO SSERRS 3

0 B O To 119 o 1S 4/ [PP 3

1.4.3 LANQUAGE USBQE ...euuueeeeiiteeinnieeeneeeueeeeeeaeeneseseeeneseesessessesssssesssesesssesssssssesssesssssssssssssssssssssnsssssssnsssnnnnnnns 4

[N E= LT To O o] 1Y 7=T 0 (o) 1= RO 5
P R 1= o 1T |l T 1o =T T = SO RP PP 5
2.2 NAME USAGE & SYNTAX i iiiiiiie e a e 6

(070 11070 JES] 3 [T TP SUPRRR 9
0 A o] o ¢ F= L1 4] o [PR TR 9
I O o To [@] o 4T 0 1=T 01 {1 o [P SRRSO 10

LanNQUAGE USAGEcooiiiiiieiie e 11
N R €T g =T - R PRRRT PP 11
A - VT o] LT /A 1Y o 1= SRR 11
e B 011V @] | 1 o | USRS 13
R o7 =T 01110 1 USRS 14
4.5 Events, Delegates, & Threadingcccvviiiiiieiiicceii e e e e e s e e e e e e s s e anae e e e e e e e snnnenraees 15
/L ST @ o] [=Tox S @o 3] o 0 11 1 o] o 1S PSR 16

(0] o] [T A1V [o [IR A o I BT o | o PRSPPI 18

S (=] (=] [T TP ERPR 19

http://www.lance-hunt.net

Lance Hunt C# Coding Standards for .NET

1. Introduction

This document describes rules and recommendations for developing applications and class libraries using the C#
Language. The goal is to define guidelines to enforce consistent style and formatting and help developers avoid common
pitfalls and mistakes.

Specifically, this document covers Naming Conventions, Coding Style, Language Usage, and Object Model Design.

1.1 Scope

This document only applies to the C# Language and the .NET Framework Common Type System(CTS) it implements.
Although the C# language is implemented alongside the .NET Framework, this document does not address usage of
.NET Framework class libraries. However, common patterns and problems related to C#'s usage of the .NET Framework
are addressed in a limited fashion.

Even though standards for curly-braces ({ or }) and white space(tabs vs. spaces) are always controversial, these topics
are addressed here to ensure greater consistency and maintainability of source code.

1.2 Document Conventions

Much like the ensuing coding standards, this document requires standards in order to ensure clarity when stating the rules
and guidelines. Certain conventions are used throughout this document to add emphasis.

Below are some of the common conventions used throughout this document.

Coloring & Emphasis:

Blue Text colored blue indicates a C# keyword or .NET type.

Bold Text with additional emphasis to make it stand-out.
Keywords:

Always Emphasizes this rule must be enforced.

Never Emphasizes this action must not happen.

Do Not Emphasizes this action must not happen.

Avoid Emphasizes that the action should be prevented, but

some exceptions may exist.

Try Emphasizes that the rule should be attempted whenever possible and appropriate.
Example Precedes text used to illustrate a rule or recommendation.
Reason Explains the thoughts and purpose behind a rule or recommendation.

http://www.lance-hunt.net 1

Lance Hunt C# Coding Standards for .NET

1.3 Terminology & Definitions

The following terminology is referenced throughout this document:

Access Modifier
C# keywords public, protected, internal, and private declare the allowed code-accessibility of types
and their members. Although default access modifiers vary, classes and most other members use the default
of private. Notable exceptions are interfaces and enums which both default to public.

Camel Case
A word with the first letter lowercase, and the first letter of each subsequent word-part capitalized.
Example : customerName

Common Type System
The .NET Framework common type system (CTS) defines how types are declared, used, and managed. All
native C# types are based upon the CTS to ensure support for cross-language integration.

Identifier
A developer defined token used to uniquely name a declared object or object instance.
Example : pubTic class MyClassNameIdentifier { .. }

Magic Number
Any numeric literal used within an expression (or to initialize a variable) that does not have an obvious or well-
known meaning. This usually excludes the integers 0 or 1 and any other numeric equivalent precision that
evaluates as zero.

Pascal Case
A word with the first letter capitalized, and the first letter of each subsequent word-part capitalized.
Example : CustomerName
Premature Generalization
As it applies to object model design; this is the act of creating abstractions within an object model not based

upon concrete requirements or a known future need for the abstraction. In simplest terms: “Abstraction for
the sake of Abstraction.”

1.4 Flags

The following flags are used to help clarify or categorize certain statements:

[CH#v2+]
A flag to identify rules and statements that apply only to C# Language Specification v2.0 or greater.

2 http://www.lance-hunt.net

Lance Hunt C# Coding Standards for .NET

Quick Summary

This section contains tables describing a high-level summary of the major standards covered in this document.
tables are not comprehensive, but give a quick glance at commonly referenced elements.

1.4.1 Naming Conventions

These

“c” = camelCase

“P” = PascalCase

“ " = Prefixwith _Underscore

“x" = Not Applicable.
Identifier Public Protected Internal Private | Notes
Project File P X X X Match Assembly & Namespace.
Source File P X X X Match contained class.
Other Files P X X X Apply where possible.
Namespace P X X X Partial Project/Assembly match.
Class or Struct P P P P Add suffix of subclass.
Interface P P P P Prefix with a capital I.
Generic Class P P P P Use T or K as Type identifier.
[CH#v2+]
Method P P P P Use a Verb or Verb-Object pair.
Property P P P Do not prefix with Get or Set.
Field P P P _c Only use Private fields.

No Hungarian Notation!
Constant P P P C
Static Field P P P _C Only use Private fields.
Enum P P P P Options are also PascalCase.
Delegate P P P P
Event P P P P
Inline Variable X X X c Avoid single-character and enumerated
names.
Parameter X X X c
1.4.2 Coding Style

Code Style
Source Files One Namespace per file and one class per file.
Curly Braces On new line. Always use braces when optional.
Indention Use tabs with size of 4.
Comments Use //or///butnot /* .. */ and do not flowerbox.
Variables One variable per declaration.

http://www.lance-hunt.net

Lance Hunt

14.3 Language Usage

C# Coding Standards for .NET

Code

Style

Native Data Types

Use built-in C# native data types vs .NET CTS types.
(Use int NOT Int32)

Enums Avoid changing default type.

Generics [C#v2+] Prefer Generic Types over standard or strong-typed classes.
Properties Never prefix with Get or Set.

Methods Use a maximum of 7 parameters.

base and this

Use only in constructors or within an override.

Ternary conditions

Avoid complex conditions.

foreach statements

Do not modify enumerated items within a foreach statement.

Conditionals

Avoid evaluating Boolean conditions against true or false.
No embedded assignment.
Avoid embedded method invocation.

Exceptions

Do not use exceptions for flow control.

Use throw; not throw e; when re-throwing.
Only catch what you can handle.

Use validation to avoid exceptions.

Derive from Execption not ApplicationException.

Events

Always check for null before invoking.

Locking

Use Tock () notMonitor.Enter().
Do not lock on an object type or “this”.
Do lock on private objects.

Dispose() & Close()

Always invoke them if offered, declare where needed.

Finalizers

Avoid.
Use the C# Destructors.
Do not create Finalize() method.

AssemblyVersion

Increment manually.

ComVisibleAttribute

Set to false for all assemblies.

http://www.lance-hunt.net

Lance Hunt C# Coding Standards for .NET

2. Naming Conventions

Consistency is the key to maintainable code. This statement is most true for naming your projects, source files, and
identifiers including Fields, Variables, Properties, Methods, Parameters, Classes, Interfaces, and Namespaces.

2.1 General Guidelines

1. Always use Camel Case or Pascal Case names.
2. Avoid ALL CAPS and all lowercase names. Single lowercase words or letters are acceptable.
3. Do not create declarations of the same type (namespace, class, method, property, field, or parameter) and

access modifier (protected, public, private, internal) that vary only by capitalization.
4 Do not use names that begin with a numeric character.
5. Do add numeric suffixes to identifier names.
6. Always choose meaningful and specific names.
7 Always err on the side of verbosity not terseness.
8 Variables and Properties should describe an entity not the type or size.
9 Do not use Hungarian Notation!
Example : strName or iCount
10. Avoid using abbreviations unless the full name is excessive.
11. Avoid abbreviations longer than 5 characters.
12. Any Abbreviations must be widely known and accepted.
13. Use uppercase for two-letter abbreviations, and Pascal Case for longer abbreviations.
14. Do not use C# reserved words as names.
15. Avoid naming conflicts with existing .NET Framework namespaces, or types.
16. Avoid adding redundant or meaningless prefixes and suffixes to identifiers
Example:

// Bad!

public enum ColorsgEnum {..}

public class Cvehicle {..}

public struct RectangleStruct {..}

17. Do notinclude the parent class name within a property name.
Example: Customer.Name NOT Customer.CustomerName

18. Try to prefix Boolean variables and properties with “Can”, “Is” or “Has".

19. Append computational qualifiers to variable names like Average, Count, Sum, Min, and Max where
appropriate.

20. When defining a root namespace, use a Product, Company, or Developer Name as the root. Example:
LanceHunt.Stringutilities

http://www.lance-hunt.net 5

Lance Hunt C# Coding Standards for .NET

2.2 Name Usage & Syntax

Identifier Naming Convention
Project File Pascal Case.
Always match Assembly Name & Root Namespace.
Example:
LanceHunt.web.csproj -> LanceHunt.web.d11 -> namespace
LanceHunt.web
Source File Pascal Case.
Always match Class name and file name.
Avoid including more than one Class, Enum (global), or Delegate (global) per file. Use a
descriptive file name when containing multiple Class, Enum, or Delegates.
Example:)
MyClass.cs => public class MyClass
{.}
Resource Try to use Pascal Case.
or

Embedded File

Use a name describing the file contents.

Namespace

Pascal Case.
Try to partially match Project/Assembly Name.

Example:
namespace LanceHunt.web

{.}

Class or Struct

Pascal Case.
Use a noun or noun phrase for class name.
Add an appropriate class-suffix when sub-classing another type when possible.

Examples:
private class MyClass

internal class SpecializedAttribute : Attribute
{.}

public class Customercollection : CollectionBase
pab1ic class CustomEventArgs : EventArgs

pFivate struct ApplicationSettings

Interface Pascal Case.
Always prefix interface name with capital “I”.
Example:
interface ICustomer
{.}
6 http://www.lance-hunt.net

Lance Hunt

C# Coding Standards for .NET

Generic Class
&

Generic
Parameter Type

[CH#v2+]

Always use a single capital letter, such as T or K.

Example:
public class FifoStack<T>

?u?1ic void Push(<T> obj)

public <T> Pop()
{..}
}

Method

Pascal Case.
Try to use a Verb or Verb-Object pair.

Example:
public void Execute() {..}
private string GetAssemblyVersion(Assembly target) {..}

Property

Pascal Case.
Property name should represent the entity it returns. Never prefix property names with
“‘Get” or “Set”.

Example:
public string Name

get{..}
set{.}

Field

(Public, Protected,
or Internal)

Pascal Case.
Avoid using non-private Fields!
Use Properties instead.

Example:
pubTic string Name;)
protected IList InnerList;

Field (Private)

Camel Case and prefix with a single underscore (_) character.

Example:)
private string _name;

Constant or
Static Field

Treat like a Field.
Choose appropriate Field access-modifier above.

Enum

Pascal Case (both the Type and the Options).
Add the FTagsAttribute to bit-mask multiple options.

Example:
pubTic enum CustomerTypes

Consumer,
Commercial

http://www.lance-hunt.net

Lance Hunt C# Coding Standards for .NET

Delegate or Event | Treat as a Field.
Choose appropriate Field access-modifier above.

Example:
public event EventHandler LoadPlugin;

Variable (inline) Camel Case.
Avoid using single characters like “x” or “y” except in FOR loops.
Avoid enumerating variable names like textl, text2, text3 etc.

Parameter Camel Case.

Example:)]))
public void Execute(string commandText, int iterations)

8 http://www.lance-hunt.net

Lance Hunt C# Coding Standards for .NET

3. Coding Style

Coding style causes the most inconsistency and controversy between developers. Each developer has a preference, and
rarely are two the same. However, consistent layout, format, and organization are key to creating maintainable code.
The following sections describe the preferred way to implement C# source code in order to create readable, clear, and
consistent code that is easy to understand and maintain.

3.1 Formatting

Never declare more than 1 namespace per file.
Avoid putting multiple classes in a single file.
Always place curly braces ({ and }) on a new line.
Always use curly braces ({ and }) in conditional statements.
Always use a Tab & Indention size of 4.
Declare each variable independently — not in the same statement.
Place namespace “using” statements together at the top of file. Group .NET namespaces above custom
namespaces.
Group internal class implementation by type in the following order:
a. Member variables.
b. Constructors & Finalizers.
c. Nested Enums, Structs, and Classes.
d. Properties
e. Methods
9. Sequence declarations within type groups based upon access modifier and visibility:
a. Public
b. Protected
c. Internal
d. Private
10. Segregate interface Implementation by using #reg1ion statements.
11. Append folder-name to namespace for source files within sub-folders.
12. Recursively indent all code blocks contained within braces.
13. Use white space (CR/LF, Tabs, etc) liberally to separate and organize code.
14. Only declare related attribute declarations on a single line, otherwise stack each attribute as a separate
declaration.
Example:

NoupbhwNeRk

00

// Bad!
[Attrbutel, Attrbute2, Attrbute3]
public class MyClass

// Good!

[Attrbutel, RelatedAttribute2]
[Attrbute3]

[Attrbute4]

?u?1ic class MycClass

15. Place Assembly scope attribute declarations on a separate line.
16. Place Type scope attribute declarations on a separate line.
17. Place Method scope attribute declarations on a separate line.

18. Place Member scope attribute declarations on a separate line.
19. Place Parameter attribute declarations inline with the parameter.
20. If in doubt, always err on the side of clarity and consistency.

http://www.lance-hunt.net 9

Lance Hunt C# Coding Standards for .NET

3.2

10

21.

22.
23.

24,
25.
26.
27.

28.
29.
30.

31.
32.

Code Commenting

All comments should be written in the same language, be grammatically correct, and contain appropriate
punctuation.

Use //or /// but never /* .. */

Do not “flowerbox” comment blocks.

Example :

//

RO T L T S T S S A L R AN L T S i Tl A T i T T i S i S o e R I L e T g T T 1y
R A A S A A A S S A A A A A U A A R S SO N A RN A RORORCNON
P A A R A e T A b b e A o R L L L b b A A b b A A A e R wRRW

Use inline-comments to explain assumptions, known issues, and algorithm insights.

Do not use inline-comments to explain obvious code. Well written code is self documenting.
Only use comments for bad code to say “fix this code” — otherwise remove, or rewrite the code!
Include comments using Task-List keyword flags to allow comment-filtering.

Example :

// TODO: Place Database Code Here
// UNDONE: Removed P\Invoke Call due to errors
// HACK: Temporary fix until able to refactor

Always apply C# comment-blocks (///) to public, protected, and internal declarations.

Only use C# comment-blocks for documenting the API.

Always include <summary> comments. Include <param>, <return>, and <exception> comment
sections where applicable.

Include <see cref=""/> and <seeAlso cref=""/> where possible.

Always add CDATA tags to comments containing code and other embedded markup in order to avoid
encoding issues.

Example:

<! [CDATAL
/ <configuration>
/// <appSettings>
/// <add key="mySetting” value="myvalue”/>
/// </appSettings>
/// </configuration>

http://www.lance-hunt.net

Lance Hunt C# Coding Standards for .NET

4. Language Usage

4.1

(o))

4.2
7.

00

10.

11.

12.
13.
14.
15.
16.

17.

General

Do not omit access modifiers. Explicitly declare all identifiers with the appropriate access modifier instead of
allowing the default.
Example :

// Bad!]
Void writeEvent(string message)

{..}

// Good!]]
private void writeEvent(string message)

Do not use the default (“1.0.*") versioning scheme. Increment the AssemblyVersionAttribute value
manually.

Set the ComVvisibleAttribute to false for all assemblies.

Only selectively enable the ComvisibleAttribute for individual classes when needed.

Example :

[assembly: Comvisible(false)]
[comvisible(true)]
?u?1ic MyCTlass

Consider factoring classes containing unsafe code blocks into a separate assembly.
Avoid mutual references between assemblies.

Variables & Types

Try to initialize variables where you declare them.

Always choose the simplest data type, list, or object required.

Always use the built-in C# data type aliases, not the .NET common type system (CTS).
Example :

short NOT System.Intl6
int NOT System.Int32
Tong NOT System.Int64
string NOT System.String

Only declare member variables as private. Use properties to provide access to them with pubTic,
protected, or internal access modifiers.

Try to use 1int for any non-fractional numeric values that will fit the int datatype - even variables for non-
negative numbers.

Only use Tong for variables potentially containing values too large for an int.

Try to use double for fractional numbers to ensure decimal precision in calculations.

Only use float for fractional numbers that will not fit doub1e or decimal.

Avoid using float unless you fully understand the implications upon any calculations.

Try to use decimal when fractional numbers must be rounded to a fixed precision for calculations. Typically
this will involve money.

Avoid using sbyte, short, uint, and ulong unless it is for interop (P/Invoke) with native libraries.

http://www.lance-hunt.net 11

Lance Hunt C# Coding Standards for .NET

18. Avoid specifying the type for an enum - use the default of int unless you have an explicit need for Tong (very
uncommon).

19. Avoid using inline numeric literals (magic numbers). Instead, use a Constant or Enum.

20. Avoid declaring string literals inline. Instead use Resources, Constants, Configuration Files, Registry or other
data sources.

21. Declare readonly or static readonly variables instead of constants for complex types.
22. Only declare constants for simple types.
23. Avoid direct casts. Instead, use the “as” operator and check for nul11.

Example :

object dataObject = LoadData();
DataSet ds = dataObject as DataSet;

if(ds = null)
{.}

24. Always prefer C# Generic collection types over standard or strong-typed collections. [C#v2+]
25. Always explicitly initialize arrays of reference types using a for loop.
26. Avoid boxing and unboxing value types.

Example :

int count = 1;
object refCount = count; // Implicitly boxed.
int newCount = (int)refCount; // Explicitly unboxed.

27. Floating point values should include at least one digit before the decimal place and one after.
Example : totalPercent = 0.05;

28. Try to use the “@" prefix for string literals instead of escaped strings.

29. Prefer String.Format() or StringBuilder over string concatenation.

30. Never concatenate strings inside a loop.

31. Do not compare strings to String.Empty or “” to check for empty strings. Instead, compare by using

String.Length ==
32. Avoid hidden string allocations within a loop. Use String.Compare() for case-sensitive
Example . (ToLower() creates a temp string)

12 http://www.lance-hunt.net

Lance Hunt C# Coding Standards for .NET

// Bad!
int id = -1;
string name = “lance hunt”;

for(int i=0; i < customerList.Count; i++)
if(customerList[i].Name.ToLower() == name)

id = customerList[i].ID;
}
}

// Good!
int id = -1;
string name = “lance hunt”;

for(int i=0; i < customerList.Count; i++)

// The “ignoreCase = true” argument performs a
// case-insensitive compare without new allocation.
}f(Str1ng.Compare(customerL1st[1].Name, name, true)== 0)

id = customerList[i].ID;
b
}

4.3 Flow Control

33. Avoid invoking methods within a conditional expression.

34. Avoid creating recursive methods. Use loops or nested loops instead.

35. Avoid using foreach to iterate over immutable value-type collections. E.g. String arrays.

36. Do not modify enumerated items within a foreach statement.

37. Use the ternary conditional operator only for trivial conditions. Avoid complex or compound ternary operations.
Example: 1int result = isvalid ? 9 : 4;

38. Avoid evaluating Boolean conditions against true or false.
Example:

// Bad!
}f}(isva1id == true)

// Good!
}f}(isva1id)

39. Avoid assignment within conditional statements.
Example: if((i=2)==2) {.}

http://www.lance-hunt.net 13

Lance Hunt C# Coding Standards for .NET

40.

41.

42.
43.
44,

4.4

45.
46.
47.
48.
49.
50.
51.
52.

53.

14

Avoid compound conditional expressions — use Boolean variables to split parts into multiple manageable
expressions.
Example:
// Bad!
}f}(((va1ue > _highScore) && (value != _highScore)) && (value < _maxScore))
// Good!
isHighScore = (value >= _highScore);
isTiedHigh = (value == _highScore);
isvalid = (value < _maxvalue);
?'[f} ((isHighscore && ! 1isTiedHigh) && isvalid)
Avoid explicit Boolean tests in conditionals.
Example:
// Bad!
if(Isvalid == true)
// Good!
if(Isvalid)
{.}
Only use switch/case statements for simple operations with parallel conditional logic.
Prefer nested if/eTse over switch/case for short conditional sequences and complex conditions.
Prefer polymorphism over switch/case to encapsulate and delegate complex operations.
Exceptions
Do not use try/catch blocks for flow-control.
Only catch exceptions that you can handle.
Never declare an empty catch block.
Avoid nesting a try/catch within a catch block.
Always catch the most derived exception via exception filters.
Order exception filters from most to least derived exception type.
Avoid re-throwing an exception. Allow it to bubble-up instead.
If re-throwing an exception, preserve the original call stack by omitting the exception argument from the throw
statement.
Example :
// Bad!
catch(Exception ex)
Log(ex);
throw ex;
// Good!
catch(Exception)
Log(ex);
throw;
}
Only use the finally block to release resources from a try statement.

http://www.lance-hunt.net

Lance Hunt C# Coding Standards for .NET

54.

55.

56.
57.

58.

59.

4.5

60.
61.
62.
63.
64.
65.

Always use validation to avoid exceptions.
Example :

// Bad!
try

conn.Close(Q);
Catch(Exception ex)

// handle exception if already closed!

// Good!)
if(conn.State != ConnectionState.Closed)

conn.Close();

Always set the innerException property on thrown exceptions so the exception chain & call stack are
maintained.

Avoid defining custom exception classes. Use existing exception classes instead.
When a custom exception is required;

a. Always derive from Exception not ApplicationException.

b. Always suffix exception class names with the word “Exception”.
C. Always add the SerializableAttribute to exception classes.
d.

Always implement the standard “Exception Constructor Pattern”:

pubTlic MyCustomException ();

public MyCustomException (string message);

public MyCustomException (string message, Exception innerException);

e. Always implement the deserialization constructor:

protected MyCustomException(Serializationlnfo info, Streani ngContext contxt);

Always set the appropriate HResu'lt value on custom exception classes.
(Note: the ApplicationException HResult =-2146232832)
When defining custom exception classes that contain additional properties:

a. Always override the Message property, ToString () method and the implicit operator string

to include custom property values.
b. Always modify the deserialization constructor to retrieve custom property values.

C. Always override the GetObjectData(..) method to add custom properties to the serialization collection.

Example :
public override void GetObjectData(SerializationInfo info,
StreamingContext context)

base.GetObjectbata (info, context);

info.Addvalue("Myvalue", _myvalue);

Events, Delegates, & Threading

Always check Event & Delegate instances for nul1 before invoking.

Use the default EventHandTer and EventArgs for most simple events.

Always derive a custom EventArgs class to provide additional data.

Use the existing CancelEventArgs class to allow the event subscriber to control events.
Always use the “Tock” keyword instead of the Mon1i tor type.

Only lock on a private or private static object.

Example: Tock(myvariabTe);

http://www.lance-hunt.net 15

Lance Hunt C# Coding Standards for .NET

66.

67.

4.6

68.
69.

70.

71.

72.
73.

74.
75.

76.

77.

78.
79.
80.
81.
82.

16

Avoid locking on a Type.

Example: Tock(typeof(MyClass));
Avoid locking on the current object instance.
Example: Tock(this);

Object Composition

Always declare types explicitly within a namespace. Do not use the default “{global}” namespace.

Avoid overuse of the pub1ic access modifier. Typically fewer than 10% of your types and members will be
part of a public API, unless you are writing a class library.

Consider using internal or private access modifiers for types and members unless you intend to support
them as part of a public API.

Never use the protected access modifier within sealed classes unless overriding a protected member of
an inherited type.

Avoid declaring methods with more than 5 parameters. Consider refactoring this code.

Try to replace large parameter-sets (> than 5 parameters) with one or more class or struct parameters —
especially when used in multiple method signatures.

Do not use the “new” keyword on method and property declarations to hide members of a derived type.

Only use the “base” keyword when invoking a base class constructor or base implementation within an
override.

Consider using method overloading instead of the params attribute (but be careful not to break CLS
Compliance of your API's).

Always validate an enumeration variable or parameter value before consuming it. They may contain any value
that the underlying Enum type (default int) supports.

Example:

public void Test(BookCategory cat)

}f}(Enum.IsDefined(typeof(BookCategory), cat))

Consider overriding Equals() ona struct.

Always override the Equality Operator (==) when overriding the Equals () method.

Always override the String Implicit Operator when overriding the ToString() method.
Always call Close () or Dispose() on classes that offer it.

Worap instantiation of IDisposabTe objects with a “using” statement to ensure that Dispose() is
automatically called.

Example :

using(sqlcConnection cn = new SqlConnection(_connectionString))
{..}

http://www.lance-hunt.net

Lance Hunt C# Coding Standards for .NET

83. Always implement the IDisposabTe interface & pattern on classes referencing external resources.

Example . (shown with optional Finalizer)
public void Dispose()
Dispose(true);]
GC.SuppressFinalize(this);

protected virtual void Dispose(bool disposing)
}f (disposing)
// Free other state (managed objects).

// Free your own state (unmanaged objects).
// Set large fields to null.

// C# finalizer. (optional)
~Base()

// Simply call Dispose(false).
Dispose (false);

84. Avoid implementing a Finalizer.
Never define a Finalize() method as a finalizer. Instead use the C# destructor syntax.

Example

// Good
~MyClass {..}

// Bad
void Finalize(){..}

http://www.lance-hunt.net

17

Lance Hunt C# Coding Standards for .NET

5. Object Model & API Design

Always prefer aggregation over inheritance.
Avoid “Premature Generalization”. Create abstractions only when the intent is understood.
Do the simplest thing that works, then refactor when necessary.
Always make object-behavior transparent to API consumers.
Avoid unexpected side-affects when properties, methods, and constructors are invoked.
Always separate presentation layer from business logic.
Always prefer interfaces over abstract classes.
Try to include the design-pattern names such as “Bridge”, “Adapter”, or “Factory” as a suffix to class names
where appropriate.
Only make members virtual if they are designed and tested for extensibility.
10. Refactor often!

coONOUVT A WNER

\\o)

18 http://www.lance-hunt.net

Lance Hunt C# Coding Standards for .NET

6. References

“MSDN: .NET Framework Developer’'s Guide: Common Type System”, Microsoft Corporation, 2004,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconthecommontypesystem.asp

“MSDN: C# Language Specification v1.5", Scott Wiltamuth & Anders Hejlsberg, Microsoft Corporation, 2003,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csspec/html/vclrfcsharpspec 15.asp

“MSDN: Design Guidelines for Class Library Developers”, Microsoft Corporation, 2004,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconNETFrameworkDesignGuidelines.asp

“MSDN: The Well Tempered Exception”, Eric Gunnerson, Microsoft Corporation, 2001
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncscol/html/csharp08162001.asp

“Applied Microsoft .NET Framework Programming”, Jeffrey Richter, January 23, 2002, 1st ed., Microsoft Press, ISBN:
0735614229

“Which type should | use in C# to represent numbers?”, locabol, February 27, 2007, Luca Bolognese’s Weblog
http://blogs.msdn.com/lucabol/archive/2007/02/27/which-type-should-i-use-in-c-to-represent-numbers.aspx

http://www.lance-hunt.net 19

